Annales de Toulouse Mathématiques online

Annales de Toulouse is the journal of our Institut de Mathématiques de Toulouse. It is one of the oldest mathematical journals in the world, and many famous people published in this journal in the past. For example, Lyapunov published his stability theory there.

Recently, the journal became somewhat obscure due to various technical problems. But now it is undergoing a substantial improvement process to regain its glory and become an excellent international academic not-for-profit mathematical journal.

In particular, the new editorial committee with JP Otal at the head will only accept very good papers which will have a good impact on the international mathematical community.

The journal has financial support from Institut de Mathématiques de Toulouse, and charges a very low price for the subscription to partially cover its production costs. Many issues of the journal are freely available online.

On behalf of the Section of Funamental Mathematics of Toulouse (Equipe Emile Picard), I would like to cordially invite every one to check out our journal and to consider submitting papers to the Annales de Toulouse :-)

Here is the latest issue, which is a special issue on complex dynamics:

Tome 21 (Series 6), numéro S5 (2012):

Numéro Spécial à l’occasion du “Workshop on polynomial matings” 8-11 juin 2011, Toulouse
Éditeur:  Pascale Roesch Mary Rees
p. i-i Détail Pascale Roesch
p. iii-x Détail Carsten Lunde Petersen;  Daniel Meyer
On The Notions of Mating
p. 839-876 Détail Inna Mashanova;  Vladlen Timorin
Captures, matings and regluings
p. 877-906 Détail Adam Epstein;  Thomas Sharland
A classification of bicritical rational maps with a pair of period two superattracting cycles
p. 907-934 Détail Arnaud Chéritat
Tan Lei and Shishikura’s example of non-mateable degree 3 polynomials without a Levy cycle
p. 935-980 Détail Guizhen Cui;  Wenjuan Peng;  Lei Tan
On a theorem of Rees-Shishikura
p. 981-993 Détail Xavier Buff;  Adam L. Epstein;  Sarah Koch
Twisted matings and equipotential gluings
p. 995-1031 Détail Kevin M. Pilgrim
An algebraic formulation of Thurston’s characterization of rational functions
p. 1033-1068 Détail Sébastien Godillon
Introduction to Iterated Monodromy Groups
p. 1069-1118 Détail Shaun Bullett;  Andrew Curtis
A holomorphic correspondence at the boundary of the Klein combination locus
p. 1119-1137 Détail John Hubbard
Matings and the other side of the dictionary
p. 1139-1147 Détail Xavier Buff;  Adam L. Epstein;  Sarah Koch;  Daniel Meyer;  Kevin Pilgrim;  Mary Rees;  Tan Lei
Questions about Polynomial Matings
p. 1149-1176 Détail

Print Friendly

Leave a Reply

You can use these HTML tags

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>




This blog is kept spam free by WP-SpamFree.